Using Envelope and Matrix Codes (TRACE 3-D & TRANSPORT Examples-2)

George H. Gillespie

G. H. Gillespie Associates, Inc. P. O. Box 2961 Del Mar, California 92014, U.S.A.

Presented at

U. S. Particle Accelerator School (USPAS)
Old Dominion University
17-28 January 2011

Presentation Outline

- 4. Using TRACE 3-D & TRANSPORT to Solve Problems
- ⇒ You will use the Simulation Lab computers in the classroom
- FODO Lattice
- Finding Matched Beam for a FODO Lattice
- Finding a FODO Lattice for a Matched Beam Requirement
- Point to Point, Parallel to Point, Point to Parallel, Parallel to Parallel

 Fitting Requirements
- Transfer Line Matching (Fitting)
- Compare TRACE 3-D & TRANSPORT Transfer Line Matching (Fitting)
- A Few Other Representative Problems (Homework)

Using R-matrix Constraints to Solve Problems

- Consider particle starting (point a) on-axis: $x_a = 0$ and $y_a = 0$
- Let the Reference Velocity $= v_s$
- The change in the x-coordinate at the end (point b) of a system $[x_b]$ due small initial velocities $[v_{xa}, v_{ya}]$ away from the axis is:

$$x_b = R_{12} [x'_a] + R_{14} [y'_a]$$

where
$$x'_a = v_{xa} / v_s \approx (Px)_a / P_s$$
 and $y'_a = v_{ya} / v_s \approx (Py)_a / P_s$

- Suppose we want a lens system that will bring a group of such on axis particles back to the x axis.
 - \Rightarrow This could be accomplished for *ALL* v_{xa} and v_{ya} if (and only if):

$$R_{12} = R_{14} = 0$$

- The condition $R_{12} = 0$ \Rightarrow "Point-to-Point" Focus in x
- Similarly if $R_{34} = 0$ \Rightarrow "Point-to-Point" Focus in y

⇒ Individual R-matrix Element Constraints Achieve Different Goals

Some Useful R-Matrix Fitting Constraints

• Trace of R-Matrix for stability in a periodic system: (1/2) Tr[R]	$ \leq$	1
--	---------	---

• For point-to-point optics in the horizontal (x) direction:
$$R_{12} = 0$$

• For parallel-to-parallel optics in the horizontal (x) direction:
$$R_{21} = 0$$

• For parallel-to-point optics in the horizontal (x) direction:
$$R_{11} = 0$$

• For point-to-parallel optics in the horizontal (x) direction:
$$R_{22} = 0$$

• For an achromatic system in the horizontal (x) direction:
$$R_{16} = 0$$
 and $R_{26} = 0$

• Similar conditions for the vertical (y) direction involving the R_{yy} submatrix

Other R-matrix Properties Useful for Constraint Conditions

• R_{11} describes dependence of the output "size" x_b on input "size" x_a :

 \Rightarrow R₁₁ = M_x = x-Magnification (|R₁₁|>1) or Demagnification (|R₁₁|<1)

Similarly:

 \Rightarrow R₃₃ = M_y = y-Magnification (|R₃₃|>1) or Demagnification (|R₃₃|<1)

• R_{21} describes dependence of the output angle x'_b on input "size" x_a :

$$R_{21} = -1/f_x$$
 where $f_x = x$ -Focal Length

Similarly:

$$R_{43} = -1/f_y$$
 where $f_y = y$ -Focal Length

- If $R_{21} < 0$ then focusing in x, while $R_{21} > 0$ is defocusing in x
- If $R_{43} < 0$ then focusing in y, while $R_{43} > 0$ is defocusing in y
- For a Quadrupole x and y not the same $(R_{21} \neq R_{43}) \Rightarrow \text{ astigmatic lens}$

4. Open the PBO Lab (homework) file saved as:

"Setup_3_FODO_1"

Open Match Specification

Select the R-Matrix Fitting Specification

Open Matrix Elements

Specify Point-to-Point Optics for x Direction:

- a. Select the R12 Element
- b. Hit "Accept" Button

Can You Find A Problem In This Window's Info?

⇒ Save this setup as "Setup_4_FODO_1"

4a. Execute a "Perform Matching" TRACE 3-D Command You should get a point-to-point fit solution that looks like this:

⇒ Save this setup as "Setup_4_FODO_3"

4b. Confirmation of a Point-to-Point Focus in x Direction

Open Beam_1, set Beam Parameters to "Semi-Axes - Beam 1"

Use "Comp From Twiss"

Should Have Equivalent Semi-Axes Data Now

Modify x Semi-Axes Parameters to Approximate a "Point" Beam:

Reduce the Horizontal "Half Beam Extent (x)" by a Factor of 10:

Half Beam Extent (x) = 0.0027424 cm

Increase the Horizontal "Half Beam Divergence (x)" by 10:

Half Beam Divergence (x) = 4.37014 mrad

Execute a "Graph Beam Line" TRACE 3-D Command

Does System Take Approximate "Point" x-Beam to a ~"Point"?

⇒ Save this example as "Setup_4_FODO_3_Test"

4c. Make the x-Beam Still More "Point Like"
Change the Horizontal (x) Parameters by Another Factor of 10

Half Beam Extent (x) = 0.00027424 cm Half Beam Divergence (x) = 43.7014 mrad

Does System Take the More "Point Like" x-Beam to a "Point"?

4d. Does this FODO System Also Have a Matched Beam?

- In example 4 the Quad strengths were solved for a FODO cell (anti-symmetric doublet) to produce a point-to-point focus in x.
- Can Directly Verify the Solution Has Condition: $R_{12} = 0$
 - ⇒ Use example "Setup_4_FODO_3_Test"

Execute a "Graph Beam Line" TRACE 3-D Command Execute a "Show R Matrix" TRACE 3-D Command

- Look at the R₃₄ matrix element in Trace 3-D History window.
 - ⇒ What can you conclude?

Homework: 4.1 FODO for Parallel-to-Parallel Focus	s. Name
--	---------

Using TRACE 3-D solve the Setup_1_FODO_1 example for a parallel-to-parallel focus in x.

Start with the PBO Lab File previously saved:

Set a TRACE 3-D Match Specification to achieve a parallel-to-parallel focus in x.

⇒ Save this example as "Setup_5_FODO_1"

4.1(a) Use TRACE 3-D Command: Perform Matching. In order to get a good match, do you need to use the Command more than once?

Your Answer: Yes __ No __ If Yes, how many iterations used __

4.1(b) What values did you get for the MMF and the quadrupole gradients?

Your Answer: MMF = _____, Q1 Grad = _____, Q2 Grad = _____

⇒ Save your solution file as "Setup_5_FODO_4"

4.1(c) What are the results for the 2×2 R_{xx'} submatrix elements?

Your Answer: $R_{11} =$ _______, $R_{12} =$ ________, $R_{21} =$ _________, $R_{22} =$ _________

4.1(d) Do these quadrupole gradients also achieve a parallel-to-parallel focus in y?

Your Answer: Yes __ No __

Homework: 4.2 FODO for Point-to-Parallel Focus. Name ______

Using TRACE 3-D solve the Setup_1_FODO_1 example for a point-to-parallel focus in x.

Start with the PBO Lab File previously saved:

Set a TRACE 3-D Match Specification to achieve a parallel-to-parallel focus in x.

⇒ Save this example as "Setup_6_FODO_1"

4.2(a) Use TRACE 3-D Command: Perform Matching. In order to get a good match, do you need to use the Command more than once?

Your Answer: Yes __ No __ If Yes, how many iterations used __

4.2(b) What values did you get for the MMF and the quadrupole gradients?

Your Answer: MMF = _____, Q1 Grad = _____, Q2 Grad = _____

⇒ Save your solution file as "Setup_6_FODO_5"

4.2(c) What are the results for the 2×2 R_{xx'} submatrix elements?

Your Answer: $R_{11} =$ _______, $R_{12} =$ _______, $R_{21} =$ ________

4.2(d) Do these quadrupole gradients also achieve a point-to-parallel focus in y?

Your Answer: Yes __ No __